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ABSTRACT

Data storytelling explores how to communicate data insights to the
general public engagingly and effectively. It combines the power
of data visualizations and storytelling techniques and is popular in
various media such as newspapers, interactive websites, and videos.
Recently, virtual reality has brought new opportunities to enhance
data storytelling with an incomparable sense of immersion. However,
there exists a limited understanding of data stories in virtual reality
(VR) as they are still in the early stage. In this paper, we investigated
the idea of VR data videos by drawing inspiration from popular 3D
data videos and studying how to transfer them from screens to VR.
We systematically analyzed 100 highly-watched 3D data videos from
Youtube and Tiktok channels to derive their design space. We then
conducted a user study with 12 participants to explore the effects
of four design factors on user experience, including varying cam-
era angles, showing chart overview, animation, and using anchors.
Specifically, participants watched 3D data videos in desktop and
VR environments. We collected and analyzed their quantitative and
qualitative feedback regarding the story’s understandability, memo-
rability, engagement, and emotional effects. Results suggested that
data videos in VR were significantly more appreciated than on desk-
tops. We concluded with design implications for future applications
and research on VR data videos.
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1 INTRODUCTION

Data storytelling - a technique for telling stories with data graph-
ics [50] - has been increasingly popular on the Internet. They often
incorporate creative, elegant, and professional visual designs to at-
tract and engage viewers. Practitioners and researchers have studied
different genres of data stories, such as interactive articles, info-
graphics, and videos [57]. With the advance in media technologies,
the media for data storytelling expands from screens to immersive
environments [29], which are thought to bring the engagement and
immersion of the audience to a new level. Yet, we have limited
empirical knowledge about data storytelling in immersive environ-
ments as it is still at an early stage. Recently, Lee et al. [37] found
that visualization in VR could help people understand quantities and
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Figure 1: A popular 3D data video on TikTok with rich camera effects.
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measurements by creating a visceral experience. In this paper, we
explore the possibilities of using VR data videos for storytelling.

To probe the underexplored use of VR data videos, we start with
understanding 3D data videos that display visualizations in 3D space.
We are inspired by our observation that many 3D data videos are con-
siderably popular on common channels such as TikTok and YouTube.
Those data videos are diverse in designs (e.g., visualization types and
styles). They use cinematography techniques in a long take to walk
the audience through different data items while manipulating the
camera (e.g., camera angles and distances) to enhance the audiences’
experience. For example, Fig. 1 shows a popular 3D data video
visualizing the neck length of different animals with rich camera
effects such as using low-angle to make the subject look powerful.
Such designs echo the form of VR 360 videos [41] that guide the
viewers across different scenes such as roller coasters and shark
shipwrecks. Thus, we see huge potentials to realize those 3D data
videos in VR environments to create a more immersive experience
for data storytelling. Towards this vision, we contribute two studies
to understand the design factors and design considerations of 3D
data videos in screen and VR environments.

In Study 1, we aim to study the design factors of 3D data videos.
We analyze 100 most-watched 3D videos on Youtube and Tiktok
to derive the design space. Specifically, we draw inspiration from
film theory and contextualize them in the context of visualizations
through iterative coding. At the top level, our design space describes
data videos from two aspects, namely mise-en-scène and cinematog-
raphy. The former focuses on the stage design (i.e., background
and anchors) and the arrangement of actors (i.e., visualizations and
their animations). The latter describes cinematographic techniques
that are further divided into within-frame (i.e., shot angle and dis-
tance) and between-frame (i.e., camera movement and purposes).
Centering around the two dimensions, we code categories for each
design factor. We report common design patterns and strategies as
the results of Study 1.

In Study 2, we seek to understand the design considerations of 3D
data videos in desktop and VR environments. We select four design
strategies that are assumed to be critical to viewers’ experiences
according to our observations and interviews with 13 experts in film,
VR, and data storytelling. Then, we conduct controlled experiments
to investigate their effects in both desktop and VR environments. 12



participants view those 3D data videos and provide their feedback
about their engagement levels, emotional responses, memory, and
understanding of the data story. The results show that VR is con-
sistently rated as better than desktop in most cases. This supports
our motivation to create a better storytelling experience through
VR. We also find that adding an overview significantly improves
understandability. Other design strategies, adding anchors, using
animations, and varying camera angles, had no significant effect
on the stories. Based on the experiment results, we discuss design
considerations and implications for creating VR data videos. We
then discuss the challenges of designing VR data videos, such as
guiding the audience’s attention, reducing motion sickness, and im-
proving aesthetic quality. We make our study material available
at https://immersivedatavideo.github.io/. To sum up, our
contributions are as follows:

• A design space for 3D data videos and an analysis of common
design patterns

• A controlled experiment investigating the effects of critical
design factors on the viewers’ experiences

• A set of design implications for VR data videos.

2 RELATED WORK

Our study is related to visualization in virtual reality, narrative visu-
alization, and data videos.

2.1 Visualization in Virtual Reality
VR offers extensive space for display and interaction, facilitating
analysis with 3D visualizations such as 3D flow maps [64], space-
time cube geo-visualization [58], and 3D scatter plots [32, 58] for
a wide range of tasks (e.g., comparison and clustering analysis).
This field continues to grow with the advancement of visualization
techniques in VR. Some research reinvented traditional visualiza-
tion [33,40] and interaction techniques [24,27,44,65] to take advan-
tage of the virtual space. Some research re-examined the adaptation
of traditional visualization techniques to VR. For example, Whit-
lock et al. [59] compared the effectiveness of visual encoding chan-
nels in terms of graphical perception. Yang et al. [63] explored how
to adapt navigation methods in desktop-based visualization to VR en-
vironment and compared zooming and overview+detail interactions.
Besides conducting evaluation experiments, other work investigated
peoples’ interaction patterns with visualization in VR (e.g., [39,48]).
Similar to this stream of research, our work re-examined the effec-
tiveness of 3D visualization designs in data videos in VR and con-
ducted user studies to derive design implications. However, our work
focused on a different domain—data videos for data storytelling, in
which design strategies are not only related to visualizations but also
other storytelling techniques such as camera movement, the setting
of scenes, and visual embellishment.

2.2 Narrative Visualization
Narrative visualizations tell data-driven stories engagingly by com-
bining data visualization and storytelling techniques. Initially, Segel
and Heer [50] concluded seven genres of narrative visualizations,
including magazine style, annotated chart, partitioned poster, flow
chart, comic strip, slide show, and film/video/animation. Surround-
ing these basic genres, follow-up work investigated design factors
to enhance the understandability [2, 31, 53], memorability [7, 31],
engagement [2], and emotional effects [34, 35], and provided design
spaces to increase the expressiveness [36] of data stories. Previous
work primarily focused on stories presented on computer screens.
Recently, data-driven storytelling in VR started to draw attention
from academia and industry [29, 38]. For example, Ren et al. [46]
developed a prototype system XRCreator for authoring data story-
telling in VR. More work adapted data stories to VR and conducted
user studies to derive design implications of data storytelling in VR.
Bastiras et al. [5] recreated six stories in VR, which received more

positive feedback than their desktop versions in follow-up user stud-
ies. Lee et al. [37] found that VR creates a visceral experience for
people to understand the quantities and measurements such as dis-
tance, speed, or height. Ivanov et al. [30] re-examined the effects of
anthropomorphism and unit visualization techniques and found that
they promoted affective responses and personal experiences. Our
work complements this field by studying data-driven storytelling
in VR 360 video, a popular VR storytelling form [41]. The design
factors we investigated come from a systematic analysis of a larger
corpus of 100 3D data videos.

2.3 Data Video

Data videos have been a focus of research in data storytelling. Many
studies summarized animation techniques. Amini et al. [3] con-
cluded eight animations and their realization in eight chart types.
They further found that two design strategies (i.e., the setup ani-
mation and pictographs) facilitate the level of understanding and
engagement of the participants [2]. Tang et al. [56] summarized
animated transition techniques that help stories smoothly switch
between scenes. Shi et al. [52] classified animation techniques based
on what narrative purposes (e.g., suspense, emphases, ellipsis) they
enhanced. Another branch of work focused on creating stories with
better structures. Amini et al. [1] labeled sequences of four visual
narrative stages (i.e., establisher, initial, peak, and release) in 50
data videos to understand their structures. Similarly, Yang et al. [62]
borrowed the traditional narrative structure—Freytag’s Pyramid and
explored how to adapt it to data videos. Finally, facing the demand to
reduce the burden of creating data videos, Amini et al. [3] developed
Dataclips—a template-based authoring tool, and Shi et al. [51] intro-
duced AutoClips that automatically generated data videos from data
facts. These works focused on 2D data videos of desktop versions.
We studied the design space of 3D data videos and paid more atten-
tion to the cinematography techniques such as camera movement in
the videos. Importantly, inspired by the similarity of 3D data videos
and VR visualizations in the use of 3D scenes and visualizations, we
re-examined the design of 3D data videos in VR.

3 STUDY 1: ANALYSIS OF 3D DATA VIDEOS

We aim to understand design considerations for data videos in VR
360 video style by first deriving design factors from 100 highly-
viewed 3D data videos online. Next, we introduce our methods for
data collection and analysis, followed by describing the result - the
design space of 3D data videos.

Study Scope. We focused on 3D data videos that displayed data
visualizations in 3D space and walked the audience through each
data mark (e.g., in Fig. 1). We excluded data videos with narrations
in a film- or documentary-like manner such as Simulation of a
Nuclear Blast in a Major City [25]. This kind of video has diverse
themes but is seldom found in previous research in data videos [10,
52, 61, 62] and our own search. Moreover, data visualizations were
often a subsidiary in those videos since non-visualization elements
such as narrators, photographs, and archival footage took major
parts [8]. We decided to focus on data visualization-centered videos
at the current stage. Furthermore, we observed that over 95% of
the surveyed data videos visualize two-dimensional datasets. For
example, the data visualization in Fig. 1 encodes animal species
and neck length. Thus, we discarded videos visualizing more than
two-dimensional datasets (e.g., with layered or facet charts) for study
manageability. Despite the simple data structure, the videos have
variable design dimensions and choices, allowing us to derive many
design strategies. Lastly, since we were interested in the VR 360
video style that walks audiences through the scene, we excluded
videos without camera movements or location changes, such as the
3D racing bar.

https://immersivedatavideo.github.io/


3.1 Data Collection
We collected videos from popular platforms, TikTok and YouTube.

Sampling. We started by searching keywords such as “3D data
videos” and “data-driven storytelling”. However, this only generated
a few videos from the search result pages, since video creators tended
to name their videos by their semantics (e.g., “which animal has the
longest neck” in Fig. 1). Nonetheless, the search results helped us
identify several KOLs (Key Opinion Leaders) in this field. Their
works were recommended on the first few pages by search engines
of Youtube and TikTok and they had at least 400K subscribers.
Totally, we crawled over 800 videos with 330 Youtube videos and
523 TikTok videos.

Filtering. We ranked the collected videos by the number of likes
or views (Youtube only provides the data of views). Then from top
to bottom, based on the study scope we mentioned above, we filtered
for target videos. We stopped until 100 data videos were reached,
which were at a feasible and sufficient scope. Those videos had at
least 135K likes or 1.7M views at that time.

3.2 Coding and Analysis Process
We combined top-down and bottom-up approaches to derive the de-
sign space. From the top-down perspective, we were inspired by the
film theory [6], since it has a formal framework for cinematography
techniques that are of virtual importance in 3D data videos but is not
studied in 3D visualizations [52]. From the bottom-up aspect, three
authors iteratively labeled those data videos. Each video was labeled
by at least two authors. We did not label the beginning and ending
frames (e.g., showing titles or introducing backgrounds). We held
meetings twice a week to discuss and resolve conflicts. The entire
labeling process took about two months since it involved identifying
camera movements between frames.

Design Space Overview. Fig. 2 provides an overview of the final
design space. At the top level, it contains two dimensions mise-
en-scène and cinematography. The two concepts are introduced by
Bordwell et al. in the book ”Film Art: An Introduction” [6] (the
best-selling and widely accepted textbook of film analysis). They are
primary aspects for analyzing film techniques of a shot—the contin-
uous footage between two cuts and the smallest unit of a film. More
specifically, Mise-en-scène describes the arrangement of four gen-
eral elements (i.e., stage setting, costumes and makeup, lighting, and
staging) that constitute the scene to be shot. Cinematograph is the
technology of motion-picture photography and covers a wide range
of subcategories. Next, we explain our rationale and considerations
when deriving the subcategories of the two dimensions.

Mise-en-scène. We mapped the four general elements (i.e., stage
setting, costumes and makeup, lighting, and staging) to elements
in the 3D data videos. We excluded the lighting as the videos
rarely manipulate lights for guiding attention or creating moods
as films do. Regarding the stage setting, it is mapped to the 3D
background in the data videos. During the bottom-up analysis,
we identified two exclusive aspects of the 3D background design.
One is the design of the whole scene (whether the background
describes a virtual or a real scene), and the other is the use of anchors
(independent visual objects to serve as a baseline for audiences to
understand the scales of data items). The costumes and makeup and
staging decide the appearance and behaviors of actors (the subject
of films), which were mapped to the design of data visualization
(the subjects of the 3D data videos) and animations happen to it. For
visualization design, we coded the mark type and visual encoding
channels following Vega-Lite, a popular declarative grammar for
specifying 2D visualizations [49]. We coded the mark semantics
(i.e., whether data items are represented by abstract graphical marks
or concrete real-world objects) and different axis trajectories that
decide how 2D visualizations are placed in the 3D environment.

Cinematography. Since little research has explored cinematog-
raphy in data videos, we started with two fundamental aspects, shot
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Figure 2: An overview of the design space with statistics.

framing and camera movements, leaving the remaining (e.g., motion
speed) to future research. Shot framing and camera movements rep-
resent techniques within a frame and between frames respectively.
For each frame, shot framing describes the relationship between the
camera and subjects in terms of distance and angle. It includes two
sub-dimensions: shot angle and shot distance. Camera movements
characterize the transition between frames. We further labeled the
purpose of camera movements (i.e., whether it is switching between
data items, observing a data item, or giving an overview).

3.3 Design Space and Analysis Results
This section explains each dimension of the design space (Fig. 2).

3.3.1 Mise-en-scène
Mise-en-scène describes the visualizations and the background.

Mark Type. Despite that visualization types play an important
role in 3D data videos, mark types are limited to three common
graphical marks: bars (33%), rectangles (7%), and lines (4%). We
are surprised not to find geospatial maps that are common in other
visualization genres [1, 53]. Instead, video creators tend to use bars
or rectangles for visualizing values of different regions or countries
(e.g., Fig. 3 (V5)), emphasizing the rankings instead of geolocation.
To sum up, 3D data videos embrace simple visualization designs,
which might be for reducing cognitive loads in watching lengthy
videos with dense data.

Encoding. Encoding channels are fundamental in data visual-
izations. Sensibly, position and size channels (including length,
area, and volume) are dominant. In 3D settings, the volume channel
(22%) is more popular than the length (11%) and area (11%) channel.
Notice that a 3D bar encodes the volume channel if all its height,
width, and depth vary (e.g., Fig. 3 (V1)). Interestingly, we find the
use of animation to encode speed (e.g., Fig. 3 (V6)), which is a new
opportunity to bring realistic feelings to immersive 3D environments.
Lastly, some cases cannot be well described by encoding channels
(3%) since the marks are objects rather than graphical marks. For
instance, Fig. 3 (V2) shows the “amount” of different foreign cur-
rencies with the same value. To summarize, 3D data videos bring
about new opportunities to use volume and animation channels that
are less common in 2D settings.

Axis Trajectory. As discussed earlier, we focus on data videos
with visualizations encoding two-dimensional datasets. Fundamen-
tally, Those visualizations are in 2D space. Nevertheless, video
creators implement several designs to show visualizations in 3D
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environments. For instance, instead of using linear axes (58%), there
are many alternative design choices such as zig-zag (13%, Fig. 3
(V1)), arbitrary (22%, Fig. 3 (V2)), and circular (7%, Fig. 3 (V5))
ones. Those design choices are less common in 2D data visualiza-
tions such as timeline visualizations [9]. It suggests considerable
efforts from video creators to refresh traditional 2D visualizations in
3D environments to create novel experiences.

Mark Semantics. Compared with 2D settings, 3D environments
create a stronger sense of reality. 3D data videos tend not to use ab-
stract graphical elements (22%, e.g., Fig. 3 (V1, 3)), but prefer those
with concrete semantic meanings (78%), showing creators’ strong
preference for embracing concrete semantics in 3D environments. In
addition to real-world objects (V2, 4, 6), another strategy is the use
of ISOTYPE visualizations [26]. Fig. 3 (V5) is an example where
the rectangle mark is made up of people-shaped pictographs.

Background Semantics. In contrast, video creators less tend to
construct backgrounds with concrete semantics, that are, real scenes
(38% e.g., natural and city views in Fig. 3 (V4, 6)). On the contrary,
they often use virtual backgrounds (62%, e.g., Fig. 3 (V1, 2-3, 5)).
It can be due to the difficulties and efforts needed to build real,
semantic backgrounds, or that creators attach greater importance to
visualizations than backgrounds.

Anchor. We note the use of anchors (39%) that are similar to
props in films. Specifically, those anchors provide baselines for
audiences to compare data scales to gain a more realistic and intuitive
understanding of data. For instance, Fig. 3 (V4) puts a human model
to help audiences understand the length of animal necks, and Fig. 3
(V6) shows a running train to immerse audiences in feeling the speed
of birds. Such anchors are particularly useful when the visualizations
encode real-world measurements such as speed and height.

Animation. Animation design has been a research focus in data
visualizations [23,52,53,56]. Nevertheless, animated visualizations
are uncommon in 3D data videos, i.e., 34% of videos animate the
visualizations. Used animation techniques are limited to basic ones
such as growing-in effects (20%, Fig. 3 (V3)) and flying-in effects
(6%, Fig. 3 (V6)). In contrast, 3D data videos animate the camera
using cinematography techniques, i.e., only 1.0% of video frames
have static camera movements. We consider cinematography a
distinct aspect of 3D data videos and detail it in the next section.

3.3.2 Cinematography

Cinematography concerns each frame and transitions between them.
To label it, we sampled one frame for every second in the video. We
labeled the start and end frames with the same camera movement
and purpose. Note that different camera movements could be used
together, such as tilting up and booming up at the same time. We
labeled the shot distance and angle for each frame.

Purpose. We start with analyzing the purpose dimension, as
it represents the types of content a camera is shooting for. Most

frames in our corpus present the switching (96.7%, e.g., Fig. 4 (V3))
between data items. We observe that videos reveal data items in a
continuous movement most time, seldom staying around a visual
mark to observe (only 2.6% of frames were for observing a single
visual mark, e.g., Fig. 4 (V2)). As 89% of videos interweave between
switching and observing data items, this suggests that most videos
apply the strategy of only carefully observing a small number of
items (e.g., the biggest ones and outliers) for emphasis. Overview
(e.g., Fig. 4 (V1)) takes the smallest percentage of frames (0.7%), as
only 29 videos used it, and 26 of them used it in the last frame.

Camera Movement. We reference the classification of camera
movement in film [55]. Specifically, the camera movements push,
truck, boom, and arc move the camera on a predefined truck without
rotating it. Pushing movies the camera close to or further away from
an object. Trucking moves the camera left or right and booming
moves the camera up or down. Arcing moves the camera around
a subject in an arc pattern. The camera movements pan and tilt
(e.g., Fig. 4 (V2)) direct a camera horizontally left or right and
vertically up or down, respectively, without changing its position.
Finally, static, random, and cutting are special cases. The name static
speaks for its meaning. Random corresponds to irregular movements
such as a slight shaking of the camera. Cut means a sudden change
from one scene to another without moving the camera in continuous
time and space. Next, we analyze camera movements and their
purposes together to understand video creators’ design choices.

For the purpose switch, push (38.32%), truck (35.22%), and
boom (16.04%) are widely used. When too large (small) or high
(short) items show, the camera pushes out or booms up to reveal
them clearly. Otherwise, a simple truck is good enough. In fewer
situations, videos use arc (4.19%), pan (3.37%), random (1.68%),
and tilt (1.01%). A close investigation reveals that pan and arc are
used together with push or truck to shoot items at turning points in
trajectories. Sometimes, the movements arc, pan, random, and tilt
are for adding variations or changing perspectives. The use of tilt
interests us the most. When switching to significantly high or large
data items, some videos use tilt to enhance the audience’s feeling of
height, creating a sense of owing. When observing certain items,
most videos use static (31.53%), random (19.88%), push (16.60%),
and arc (11.50%). While stopping the camera for observation is an
intuitive treatment, more videos prefer to use random, push, and arc
to mimic human eyes observing an item from different directions,
adding energy to the shot [55]. As for the purpose overview, the
videos use push (43.92%), boom (15.35%), and static (15.14%) most.
Naturally, to include all data items in the shot, the camera pushes
out and booms up. Sometimes, videos need to use arc (13.65%) and
pan (9.38%) to face the camera to the front of the data items. Finally,
many videos freeze for about 1-3 seconds in the overview.

Shot Distance. Shot distance is originally defined by how much
of the environment and characters (e.g., body parts from the knees
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up) are in the shot [54]. We adapted the definition based on how
many visual marks are in a shot and classified them into close-up
(parts of a visual mark), full (one visual mark), long (two or more
visual marks), and extreme long (all visual marks) shots (e.g., Fig. 4
(V4)). The long shot (80%) is mostly used to help compare visual
items next to each other. Full (9.5%) and close-up (5.2%) shots
are used less, and extreme long shot (5.3%) naturally comes with
showing the overview of the whole visualization. Most videos (47)
have both cases of increasing and decreasing the camera distance for
observing some items closely. Some videos (37) increase camera
distance (from full/close-up to long to extreme-long) throughout the
whole video. Only 16 videos never changed shot distance.

Shot Angle. We concluded four types of camera angles: high
(80.6%), straight (16.7%), low (2.6%), and POV (0.1%). The camera
angles, high, straight, and low, follow their literary meanings. POV
represents a special case of seeing a chart in a first-person view. We
found that most videos use only one angle type, high angles (39),
straight angles (14), or low angles (1) the whole time. For other
videos (54), they use one angle as the dominant one (straight or high)
and change the angle to straight, low, or high for observing large
items or all items in the later part of the videos.

4 STUDY2: EXPERIMENTS WITH VR VIDEOS

Study 2 explored the possibility of adapting design strategies from
3D data videos to VR data videos. We evaluated four design strate-
gies in VR that were selected based on our observation from Study
1 and consultants with 13 experts in VR, data storytelling, and film.

4.1 Pilot Study: Expert Interview
To make our study manageable, we hoped to select a subset of design
factors that were potentially more important in user experiences. We
conducted an interview study with experts in VR, film, and data
storytelling. Specifically, we recruited 13 experts in VR (E1 - E5,
with 1 to 4 years of experience), film (E6 - E9, with 2 to 25 years
of experience), and data storytelling (E11 - E13, with 2 to 6 years
of experience). We first introduced our design space to the experts
and gave them full access to the video gallery on our website. Then,
they rank the design strategies from an initial list of comparisons
from four aspects: understandability, memorability, engagement,
and emotional effect. As mentioned in Section 2.2, these metrics
were commonly used for evaluating data stories in previous research.
In the initial list, each comparison had at least two design strategies
from one or a combination of dimensions in our design space. These
strategies were popular in the corpus, or we found to bring different
viewers’ experiences. When they found the effects of a strategy

depended, they gave their explanations. For example, E10 marked
the effects of “using anchors” as it depends and explained that
when people already could feel the quantity of data, anchors could
become distractions. Afterward, we asked experts what factors they
found most important for viewers’ experiences. Moreover, we asked
VR experts whether these strategies could be adapted to VR and
what should be paid attention to for the adaptation. They provided
instructive suggestions for our implementations of VR videos in the
following experiments.

Based on the interview results, we filtered out comparisons with
strategies that were equally valued. For example, six participants
thought that different trajectories would make limited differences,
and three participants suggested that these trajectories facilitate
comparing items at different directions and levels (e.g., comparing
two adjacent items in a linear trajectory, comparing two lines of
items in a zigzag trajectory). We also eliminated dimensions that
were not mentioned by participants as important, as well as design
strategies that had been explored in the work by Lee et al. [37]
such as the realism of the scene and data visualizations. Finally, we
selected four comparisons: (1) adding anchors or not, (2) keeping
camera angles the same versus changing camera angles, (3) using
animation or not, and (4) showing an overview at the end or not.

4.2 Study Design and Procedure
We conducted a controlled experiment to evaluate the above four
design strategies.

4.2.1 Experiment Material
We implemented the cases with two datasets and the two most basic
chart types (bar charts and line charts) in our corpus. We created
a control case for each chart and another four experimental cases
using the strategies (Fig. 5).

The Bar Chart Case. The bar chart [17] showed the top 15
countries with the most tea production. In the control case, the
camera was kept at a high angle to show each bar. It moved from
left to right, boomed up when a bar was too high to reveal its top
part, and stopped at the last 3D bar. Next, we introduce how we
modified the control case to use the four design strategies. For the
case having anchors, we added 3D models of humans, cars, and
famous buildings (e.g., the Eiffel Tower). For the case that changed
camera angles, we followed the design of the original video. The
camera shot each bar at a low angle at the beginning, changed to
a high angle in the middle, and tilted up and down when revealing
the two highest bars. This was also common in other videos. In the
case that used animation, each bar grew up when the camera moved



Experiment Case 1: Bar Experiment Case 2: Line

Stock index: 5166.35

A Control

B Anchor

C Angle

D Animation

E Overview

Figure 5: This figure shows the keyframes of the videos in five conditions: (a) the control cases, (b) adding anchors, (c) varying camera angles, (d)
using animation, and (e) showing an overview at the end.

close to it. Finally, for the case that showed an overview, we added
an extreme long shot at the end. Besides the above modifications,
the other settings of the four cases (e.g., camera speed, the scene,
lighting) were the same as the control case.

The Line Chart Case. We used the data of the Shanghai Com-
posite Index from 1991 to 2018 [21]. The control case had the same
design as the control case of the bar chart. A camera moved from
left to right to gradually show a 3D line chart without any anchor or
animation. We used similar anchors in the bar chart, except that we
mapped 10 indexes to one-meter height. As for changing camera
angles, we changed the point of view from “third-person” to “first-
person” in the two biggest peaks that happened from 2006 to 2008
and from 2015 to 2016. The audience would have a similar view
that happened when riding a roller coaster. At last, for the case with
an overview, we used the same treatment with the bar chart.

Adapting Videos in VR. As suggested by experts in VR, we
carefully designed the camera movements in VR. Following the form
of VR 360 videos [41], while we have predefined camera movements,
the participants could freely move their heads to look around. The
camera movement speed was set at not too slow, which might cause
boredom, nor too fast, which might not show data clearly. We
asked three external researchers to experience our cases and two
of them reported motion sickness. Following previous research on
motion sickness in VR [45], we took the following strategies. First,
when the camera needed to stop and change direction, we use the
ease-in and ease-out effects. Second, when the camera changed
large degrees (e.g., switch between the first-person and the second-
person view), the movement speed was set fast to mimic the effect of
jumping between scenes, which caused less sickness than a smooth
transition but still could help the audience orientate themselves.
Finally, when showing an overview, instead of pushing back the
camera continuously, the scene was changed instantly.

4.2.2 Mixed Design

We created 10 VR and 10 desktop videos. We hope to understand
the effects of the four design strategies and their differences in VR
and desktop. However, we faced difficulties in recruiting enough
participants to conduct in-lab studies during the pandemic and it
would be a huge burden for each participant to see all cases if
we took a within-subject experiment design. Therefore, to reduce
the burden of participants and still make a reasonable sample size,
we took a mixed design that combined the between-subject and

within-subject design [4]. The between-subject factor was the chart
type (i.e., bar chart and line chart), and the within-subject factors
were the device (i.e., VR and desktop) and the case (i.e., control
case and experimental case). For each comparison between an
experimental case and a control case, half of the participants would
see bar charts, and another half of the participants would see line
charts. As the experimental cases of each chart shared the same
control case, participants only needed to watch the control cases
of each chart one time. Participants would see both control and
experimental cases in VR and desktop. To reduce the learning
effects, one participant would see line charts in two comparisons
and see bar charts in another two comparisons. Under this mixed
design, we had a sample size of 12 participants for each comparison
between the control and the experimental cases. Every participant
watched 12 videos in total.

4.2.3 Experiment Procedure

We recruited 12 participants (six females) from a university. Most of
them were postgraduate students. Only four of them were familiar
with VR, and the others had few or no VR experiences. In the
beginning, we introduced the concept of VR data videos. They were
told that the video was designed as they were sitting on an aircraft
to have sightseeing. The initial direction they faced was always
the direction the aircraft faced. Every participant watched both the
desktop and VR versions of six cases in random order. Among
the six cases, two were control cases of the line chart and the bar
chart. Two were experimental cases with the line chart from two
comparisons. The remaining two were experimental cases with the
bar chart from the other two comparisons. We made sure to have
all possible combinations of the chart type and the types of the two
comparisons. We conducted the experiments in a large open space,
using an Oculus quest2 connected to a Macbook Pro with an Apple
M1 chip and 8 GB of RAM.

When finishing watching a video, every participant rated the un-
derstandability, memorability, engagement, and emotional effect of
the video on a 7-point Likert scale and gave comments. We followed
methods in [36, 47] to measure the four metrics through subjective
ratings, which was the most feasible for our task. While all other
metrics have been evaluated subjectively in previous research about
visualization evaluation, the evaluation of memorability often in-
volves asking participants to recall the visualization [47]. It was
not suitable for our case as participants saw the same story several
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Figure 6: The chart shows the average scores with standard errors for each comparison. The upper and lower sections show data of the bar chart
cases and the line chart cases respectively. In each grouped bar chart, the left part shows the data of the control case, and the right part shows
the data of the experimental case. Blue bars represent data of the VR cases, and yellow bars represent data of the desktop cases.

times. Thus, measuring understandability and memorability through
subjective ratings instead of objective tasks (e.g., visualization tasks
for testing comprehension) was a compromise to avoid the learning
effects. Nonetheless, we emphasized to the participants that “mem-
orability” was not about how many numbers they could remember
exactly from the video but whether the video could leave a long-last
impression in their memories. Thus, participants’ responses were
still valuable references for achieving the goal of these videos in
promoting science popularization. Lastly, we interviewed partic-
ipants to gather feedback on the following questions: (1) Did and
how did VR bring them different experiences? (2) What are the de-
sign strategies they appreciated (if any)? (3) What are the potential
improvements in these cases?

5 USER STUDY RESULT

We analyzed participants’ ratings on each metric for each compar-
ison between the control and the experimental case independently.
We used a Mixed ANOVA in SPSS Statistics with chart type being
the between-subject factor, the type of device and case (i.e., control
or experimental case) being within-subject factors, and the score
on each metric being dependent variables. Next, we report on both
statistical analysis results (see Fig. 6) and qualitative feedback from
the participants for each comparison. In the results, η2

partial means
effect size—the magnitude of the difference between compared
groups, and MD represents the mean difference between two groups
based on estimated marginal means.

Anchor. Participants gave significantly higher scores of emo-
tional effect (P < 0.05,η2

partial = 0.489,MD = 1.167), engage-
ment (p < 0.001,η2

partial = 0.715,MD = 1.833), and memorabil-
ity (p < 0.001,η2

partial = 0.717,MD = 0.750) when using VR than
desktop, but not the case for the understandability (p > 0.1). The
engagement of videos with anchors had a weak advantage over those
without (p < 0.1,η2

partial = 0.310,MD = 0.583). However, having
anchors did not significantly affect the understandability, memorabil-
ity, or emotional effect. There was a weak crossover interaction be-
tween chart type and the use of anchors (p < 0.1,η2

partial = 0.288).
When participants viewed the bar chart, the average score of the
emotional effect of cases with anchors was a little higher than those
without (p < 0.1,MD = 0.75). On the contrary, for line charts,
having anchors drove a smaller mean score of the emotional effect
(p > 0.1,MD =−0.417). Participants reported that anchors did not
facilitate understanding mainly for two reasons. First, for the line
chart, four participants (P5-7, 11) found that they could not relate
the anchors to the abstract stock index data. Second, two participants
(P4, 7) had seen the buildings in real life, and the buildings were
like miniaturized models in VR. The unrealistic experience brought

no benefit to understanding.
Angle. We found no significant positive effects of changing

angles. VR was significantly better in terms of memorability
(p < 0.05,η2

partial = 0.368,MD = 0.667) but no significant ef-
fect in understandability (p > 0.1). Surprisingly, we found a
weak interaction effect of device type and the use of angles for
metrics emotional effect (p < 0.1,η2

partial = 0.286) and engage-
ment (p < 0.1,η2

partial = 0.294). When there was no change of
angle, VR was better than desktop in terms of emotional effect
(p < 0.05,MD = 1.083) and engagement (p < 0.05,MD = 1.333).
On the other hand, with angle changes, VR was not significantly
better. We found that the weakened effectiveness of VR with camera
changes might be a result of two factors. First, four participants (P2,
10-12) reported a slight sickness. Second, we observed situations
where when the camera tilted up in the bar chart cases, two par-
ticipants were looking aside and missed the moment. We received
diverging comments from participants on changing angles. Three
participants (P1, 9, 11) indicated that the line chart in a “first-person”
view might cause confusion with a loss of the big picture. However,
seven participants (P3, 5, 7, 9-11) agreed on the positive effects of
changing angles in engagement by bringing variations and enhancing
the sense of depth and height.

Animation. There was no main effect of the use of anima-
tion. We still observed the positive effect of using VR in mem-
orability (p < 0.05,η2

partial = 0.614,MD = 0.971), engagement
(p < 0.001,η2

partial = 0.878,MD = 1.821), and emotional effect
(p < 0.001,η2

partial = 0.889,MD = 1.436), but not for understand-
ability (p > 0.1). Participants had two opposite attitudes toward the
use of animation. Four participants (P6, 8-9, 11) disliked animation
and thought processing both the animation and camera movements
brought burdens to them. Moreover, in cases without animation, VR
provided a wide view so that they could preview the whole chart
by turning around. Otherwise, they had to wait for the animation
to finish, which hindered their understanding. On the contrary, six
participants (P3, 5, 9-10, 12) appreciated that animation guided their
attention and commented that the grow-up animation of data items
worked like a double-encoding, increasing their sense of the data.

Overview. Compared with desktop, VR was significantly better
in engagement (p < 0.05,η2

partial = 0.531,MD = 1.450) and emo-
tional effect (p < 0.05,η2

partial = 0.531,MD = 1.214), and had a
weak advantage in memorability (p < 0.1,η2

partial = 0.306,MD =
0.464), but not for understandability (p > 0.1). We found sig-
nificantly positive effects of overview in understandability (p <
0.05,η2

partial = 0.458,md = 0.679), and weak positive effects
in memorability (p < 0.1,η2

partial = 0.322,md = 0.593), engage-



ment (p < 0.1,η2
partial = 0.280,md = 0.507), and emotional effect

(p < 0.1,η2
partial = 0.285,md = 0.329). Participants agreed on the

effectiveness of an overview that provided a comprehensive view of
the data and evoked affecting responses by enhancing the perception
of differences between data items.

6 DISCUSSION

Next, we discuss the implications and the limitation and future work.

6.1 Design Factors and Implications
Give references that are semantically related to data. Many
videos in our corpus had concrete backgrounds, visual marks with
realistic textures and shapes, and real building models as anchors. In
expert interviews, 11 experts emphasized the importance of adding
realism to VR videos for immersion. A good example is the video in
which water from the sea rose like mountain peaks, forming visual
marks to compare the heights of tsunamis. However, experts (E2-3,
8-9, 11-13) proposed that the background, visual marks, and anchors
could distract the audience or even harm their understanding of the
story if they were not semantically related to data. For example, the
case that compared the neck lengths of different creatures by present-
ing their models in a mountain view received negative comments.
Experts found the mountain view was irrelevant, causing confusion.
In that case, an abstract background was preferred. Similarly, the
user study participants (P2, 8, 12) reported the difficulties of con-
necting building models to data in the line chart. Furthermore, be
cautious of visual marks or anchors that are partially realistic due to
scale transformation or missing essential details. For instance, due
to the scale transformation, two participants (P2, 9) were confused
by the differences between the building models as anchors in reality
and VR. When watching a video comparing the numbers of bones
of creatures, one expert (E10) found that the bones confusedly had
the same shapes.

Camera angle: Create a comfortable and guided trip. 10
experts remarked highly on the variance of camera angles for pro-
viding new perspectives and evoking emotions. However, applying
it requires much effort into reducing motion sickness and clearly
conveying the narrative intention. The movements and rotations of
the camera in the line chart case caused slight motion sickness for
some participants (P2, 8, 10-12). While we applied jump cuts for
moments with a great degree of changes in the camera angle, the rest
small changes still caused motion sickness. Data storytellers could
consider other methods such as restricting the field of view [22].
Moreover, not all participants appreciated the change of angles when
they could not understand its narrative intention. For example, the
first-person point of view in the line chart was to create a feeling
of going up and down with the trend of the stock market to show
its uncertainty and risks. However, without narrations to indicate
the message, a few participants could not fully understand the video.
Sometimes, participants could miss the intention of the narrative
when their own sights conflicted with the direction of the camera.
While most participants in the experiment went back to the initial
direction to follow the story, two participants (P6, 11) reported that
they felt lost at some moments. This could be avoided by deliberately
guiding the audience’s attention with visual cues.

Animation: Balance the reader-driven and author-driven sto-
rytelling and reduce the cognitive load. The participants’ disagree-
ments on the effectiveness of animation came from their preferences
for reader-driven and author-driven storytelling [50] . While some
participants (P3-5, 9-12) valued the animation for guiding their
attention and enhancing the sense of data, others indicated that it
restricted their ability to preview the data in VR. To balance the
reader-driven and author-driven storytelling, we suggested the fol-
lowing alternative designs that we observed from our corpus. First,
a moving visual cue, such as a dot sliding on a line chart, could
be applied to guide attention. Second, video creators could add

contours of visual marks while keeping a grow-in animation. At
last, other animated effects such as blinking, shaking, and bouncing
are also worth trying. When selecting animation techniques, an
important consideration is how to reduce the cognitive load of the
audience. Five experts (E2, 10-13) suggested that animation should
have semantic relation with the data itself to avoid distractions. For
example, for the video comparing the sizes of craters, an animation
of a rock falling down from the sky was more appropriate than a
fade-in animation. Second, adding animations could increase the
scene’s visual complexity too much, which also concerns other vi-
sual elements. For instance, one expert (E10) commented that the
video comparing the numbers of bones of different creatures already
had a complex background and visual marks, and the animation of
each bone flying made the scene too complex.

Camera movements and trajectories: Consider data patterns
and perspectives. Moving the camera along a trajectory with varia-
tions of the camera’s angle and distance to progressively reveal data
was the essential method to manipulate the view experience. All
experts mentioned that choosing camera movements and trajectories
should depend on data patterns. The first matter is whether there are
significant differences between data. Eight experts (E1, 4-7, 10-12)
suggested that movements such as boom and tilt were primarily for
revealing differences between data items. Similarly, five experts (E2,
10-13) indicated that the linear trajectory could better emphasize
the differences between data items than circular and zig-zag trajec-
tories. Secondly, storytellers could choose strategies based on the
set of data items they focus on. Four experts (E2, 10-11, 13) men-
tioned that the zig-zag and circular trajectories were more suitable
for comparing multiple items, while the linear trajectory focused
more on the nearest item. Pushing and arcing movements can also
be used to switch between showing details of one data item and
comparison between multiple ones. Finally, choosing movements
and trajectories could also come from the purpose of entertainment.
Five experts (E6-10) suggested arbitrary trajectories and camera
movements could prevent making the audience bored.

6.2 From Desktops to VR

All participants in the experiments praised VR for its wide view and
immersiveness. Nine participants (P1-4, 6-8, 10, 12) mentioned that
being able to look forth and back in VR helped them review and
preview data which facilitated understanding and memory. Eight
participants (P3, 5-8, 9-11) reported that ”moving up and down”
along the data trend and viewing the data items like high buildings or
mountains in real life created a sense of “wow” in VR. The statistical
results also showed that participants rated VR as being significantly
better than desktop in terms of memorability, engagement, and
emotional effects, without hindering the understandability. Despite
its advantages, the following attributes of VR could make it difficult
to achieve the same effects of some design strategies in VR as
desktop-based videos do. First was the issue of motion sickness
brought by camera movements, as mentioned in Section 6.1. Second,
the function of freely changing the view direction in VR made it hard
to let the audience precisely follow and catch the intention of camera
movements. Moreover, some participants (P1, 4, 7, 10-12) reported
that they were not very used to the lower resolution in VR, having
negative impacts on the aesthetic quality. Finally, three participants
(P2, 4, 7) felt that the speed of movement was slower in VR than on
desktops because the wider view of VR made less obvious visual
changes in the scene when the camera moved.

6.3 Limitation and Future Work

Other design dimensions. Our design space does not concern the
design of sound, music, and speed of camera motion that are im-
portant to create the mood and atmosphere [61]. Furthermore, we
excluded film- or documentary-like 3D data videos that have com-
plex narratives and visual elements to create an engaging storytelling



experience. They are also very worth to be explored in the context of
VR. Finally, due to the insufficiency of VR data stories corpus, we
drew inspiration from 3D data videos displayed through 2D screens.
Therefore, some unique characteristics of VR were not considered
such as the interaction and the position of elements in a larger 3D
space relative to the audience. As concluding related strategies
require other frameworks, we leave it for future work.

More visualization types. The videos in our corpus used the
most basic data visualizations. Visualization types such as network,
matrix, flow, and maps were under exploration. Moreover, we fo-
cused on videos with two-dimensional datasets. One film expert (E5)
mentioned that with one more dimension to code information, the
purposes and effects of camera movements could be quite different
from that in the current videos. For example, for a data chart that
encodes data in all three dimensions, changing the orientations and
directions of the camera reveals new information and perspectives.
Camera movements could achieve more dramatic effects such as
suspense and twist. Future work is required to collect or create more
complex cases.

Expanding the scope of the experiments. Due to limited re-
sources, we applied a mixed design and let participants see the same
datasets several times to increase the sample size. While we ran-
domized their watching orders to minimize the learning effects, we
could not entirely eliminate its potential influences on the quality of
participants’ feedback in the trials in the later part of the experiments.
Moreover, we focused on a subset of design strategies without con-
sidering the combined effects of different design dimensions. In the
future, we plan to increase the scope of our experiments in terms of
both increasing the number of subjects and design strategies.

Tools for creating 3D VR video. We created the VR video with
Unity, the mainstream software for developing VR applications. We
found that the whole process was far more time-consuming than
creating 2D visualizations with animations. For example, setting the
path and turning points for camera movements and rotations in a 3D
space required significant attempts and adjustments. Coordinating
animation and camera movements could be even harder. Creating
3D visual marks with semantic texture and shape, like creating 2D
pictographs, is also challenging. Future tools could provide (semi-
)automatic supports [60] for facilitating the setting of the camera
and animation based on data patterns and templates for creating
expressive 3D data visualizations.

7 CONCLUSION

This study explored the possibilities of adapting 3D data videos
designs to VR 360 data videos. We proposed a design space by ana-
lyzing 100 highly-watched 3D data videos. We then evaluated four
design strategies (i.e., anchors, animation, camera angles, overview)
from four aspects (i.e., understandability, memorability, engagement,
and emotional effect) in both VR and desktop data videos. The result
showed that VR was rated as more memorable, engaging, and evok-
ing more emotional effects than desktops. For design choices, giving
an overview significantly improved the understandability of data
videos, while the other three design strategies did not significantly af-
fect the quality of videos. While most participants appreciated them,
their effectiveness depends on more factors such as their semantic
relations to data and participants’ preferences for author-driven and
reader-driven storytelling experiences. We provided a set of design
implications for better applying these design strategies. Future work
could expand the experiment scope, explore VR data videos with
more complex designs, and develop authoring tools.
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